
Production Hardware Overprovisioning: Real-world
Performance Optimization using an Extensible

Power-aware Resource Management Framework
Ryuichi Sakamoto⇤, Thang Cao⇤, Masaaki Kondo⇤, Koji Inoue†, Masatsugu Ueda†,

Tapasya Patki ‡, Daniel Ellsworth‡, Barry Rountree‡, Martin Schulz‡
⇤The University of Tokyo

†Kyushu University
‡Lawrence Livermore National Laboratory

⇤r-sakamoto@hal.ipc.i.u-tokyo.ac.jp

Abstract—Limited power budgets will be one of the biggest
challenges for deploying future exascale supercomputers. One
of the promising ways to deal with this challenge is hardware

overprovisioning, that is, installing more hardware resources than
can be fully powered under a given power limit coupled with
software mechanisms to steer the limited power to where it is
needed most. Prior research has demonstrated the viability of
this approach, but could only rely on small-scale simulations of
the software stack. While such research is useful to understand
the boundaries of performance benefits that can be achieved, it
does not cover any deployment or operational concerns of using
overprovisioning on production systems.

This paper is the first to present an extensible power-aware
resource management framework for production-sized
overprovisioned systems based on the widely established
SLURM resource manager. Our framework provides flexible
plugin interfaces and APIs for power management that can
be easily extended to implement site-specific strategies and for
comparison of different power management techniques. We
demonstrate our framework on a 965-node HA8000 production
system at Kyushu University. Our results indicate that it is
indeed possible to safely overprovision hardware in production.
We also find that the power consumption of idle nodes, which
depends on the degree of overprovisioning, can become a
bottleneck. Using real-world data, we then draw conclusions
about the impact of the total number of nodes provided in an
overprovisioned environment.

Index Terms—Power-constrained HPC system;
Overprovisioned; Design of resource manager; Plugin interface;
Power characteristics of HPC system;

I. INTRODUCTION

High performance computing (HPC) systems are critical for
advancing modern science and are a major asset for research
organizations. These systems are large scale resources; and
most HPC systems are built as clusters of hundreds to
thousands of compute nodes. The amount of power required
for HPC system operation results in high costs for owning
organizations. With many of the current top HPC systems
already capable of consuming near 10 megawatts, we are
heading towards a regime where future HPC systems are no
longer limited by the amount of hardware resources they can
deploy, but by the power they will consume.

Traditionally, organizations use worst case power
provisioning, where enough power is procured to run
all components at their peak power consumption at all times.
Under this constraint, energy efficiency becomes a major
focus for system design. At a coarse granularity, nodes might
be powered off to reduce energy consumption (reducing
the affected node’s power consumption to zero watts), but
the time taken to power the nodes back on is significant.
Dynamic component level techniques that reduce energy
consumption of individual nodes with much finer logical
and temporal granularity exist (for example, power gating
within processors, dynamic voltage or frequency scaling) and,
in aggregate, provide substantial energy savings. However,
they also result in time varying behavior without reducing
the peak power consumption. As a consequence, worst
case power provisioning when used with energy efficiency
optimizations—in hardware or software—results in poor
power utilization at scale.

As the alternative, hardware overprovisioning [27], [30] has
been shown to be an approach to improve power utilization
at scale. A hardware overprovisioned system contains more
compute nodes than the organizational power budget allows
to operate simultaneously at peak consumption. For example,
in a system composed of 1,000 nodes, each of which could
potentially consume 1kW of power, 1MW of power must
be purchased for worst case provisioning. Knowing that the
individual nodes are unlikely to consume 1kW at all times
during operation, the owning organization might purchase
some number of extra nodes under the same power budget
of 1MW. The extra nodes are able to take advantage of the
otherwise unutilized power for productive computation.

Study of hardware overprovisioned HPC systems started
fairly recently and there are many open questions regarding
the design and operation of such systems. Most existing
research has focused on small-scale systems or simulations
and preliminary performance results; the impact of hardware
overprovisioning at large scale and in production environments
has not, yet, been examined. Furthermore, the software stack
for making such systems accessible to users and administrators



is missing. For overprovisioning to be successful, several
practical deployment and operations management questions
need to be answered, the three most important ones being:

1) How can power be managed in an overprovisioned
system safely in order to maintain the systemwide power
budget at scale?

2) How can we fairly measure and evaluate the
performance of various power management strategies
across HPC centers?

3) How many extra nodes should be added to a system to
gain the most benefits?

In this paper, we make four research contributions that
help to answer these questions: a) we present an extensible
power-aware framework based on the widely used SLURM
[34] resource manager. This framework provides flexible
plugin interfaces that can be used by different HPC centers
to enforce site-specific power management policies; b) as
a proof by construction, we show results of deploying our
power-aware SLURM extensions on a 965-node production
HA8000 system that demonstrates that is is possible to deploy
a hardware overprovisioned system at scale safely; c) using our
platform capable of implementing several power management
strategies, we discuss how our SLURM extensions can be
used to implement and fairly compare competing power
management solutions found in the literature; and finally, d) we
use experimental results to investigate the impact of varying
the number extra nodes, or the degree of overprovisioning,
given job mixes with differing peak power consumption.

II. BACKGROUND AND RELATED WORK

In this section, we describe general related work about
power-aware resource management. The main research topics
are job scheduling, dynamic power management, processor
variation, and performance estimation. We also discuss
SLURM extensions and resource management challenges.

A. Job Scheduling
Previous non-overprovisioned HPC systems optimize

node utilization with job scheduling techniques such as
backfilling [26]. Energy-aware and power-aware techniques
for non-overprovisioned systems have been studied [17],
[16], [18], [19], [5]. In an overprovisioned system, the
scheduler optimizes both node and power utilization. The
scheduler thus needs to adjust the power cap and the job
size. Gholkar et al. [21] and Patki et al. [28] optimize system
throughput by considering moldable jobs on overprovisioned
HPC systems. Patki et al. use a power-aware backfilling
algorithm. Sarood et al. [29] design a scheduling algorithm
for optimizing both moldable and malleable jobs using integer
linear programming. All the aforementioned strategies search
for an optimal job allocation and power allocation, while
considering performance optimization.

B. Dynamic Power Management
The job scheduling techniques described above determine

the distribution of power allocation statically before running

a job. This can result in poor power utilization and can
also impact system throughput as the unutilized power could
have been used to schedule more jobs. To tackle this
problem, dynamic power management schemes have been
proposed [13], [12], [8], [14]. Cao et al. [8] reallocate power
resources dynamically between high priority jobs and low
priority jobs. Ellsworth et al. [12] suggest balancing unused
power between jobs by using continuous monitoring and
capping.

C. Processor Variation

Modern CPUs and DRAMs exhibit heterogenous power
and performance characteristics caused by manufacturing
variations despite having the same microarchitecture [6],
[22]. To make matters worse, this effect is amplified under
power caps. For example, if we set the same power cap to
processors in an HPC cluster, each processor may end up
having a different operating frequency based on its individual
characteristics. This introduces load imbalance in perfectly
load balanced applications, limiting the performance of to that
of the slowest processor. Processor variation adds complexity
to finding the best power capping method.

Significant research exists to address this problem [23], [8],
[32], and it focuses on two areas of resource management. The
first area explores multicore SMP CPUs. Ehsan et al. [32]
consider the number of cores that should be used under a
power constraint and what the physical layout of these cores
should be. On the other hand, Inadomi et al. [23] and Cao
et al. [8] focus on multi-node HPC systems. They decide the
best node allocation and the power caps in order to maximize
application performance in clusters with processor variation.
Gholkar et al. [21] propose a 2-level variation-aware approach:
at the macro-level, they handle job scheduling, while at the
micro-level, they refine the job scheduler’s resource selection
by using processor variation-awareness.

D. Performance Prediction

Estimating application performance under a power
constraint is critical for designing overprovisioned HPC
systems and for implementing an efficient software stack
with power-aware job schedulers and runtime systems.
Prediction accuracy is important, as underestimating power
consumption of applications can lead to the system-wide
power budget being exceeded. Several researchers are trying
to find good methods for estimation. Patki et al. [28] estimate
job execution times under the various power caps by using
regression models based on profiled data. Inadomi et al. [23]
estimate the performance of a job by using a two point
estimation method with process variation. First, they generate
a process variation table across all nodes at machine setup
time and then, once a job gets scheduled, run the job twice
on a single node, once without any power caps and once with
a tight power cap. Finally, they calculate a best capping value
by using the profiling data and the variation table. Sarood et
al. [29] propose a power-aware strong scaling performance
model based on Downey’s [11] model.



E. SLURM Extensions

Most of the aforementioned research evaluates the
efficiency of proposed methods using simulators or small-scale
schedulers that cannot be used in production systems.
Production level HPC systems need to support many features
such as accounting, priorities and advanced plugins. It is
thus difficult to adapt these algorithms proposed in research
literature to production-level HPC systems.

Only a small amount of research work has focused on these
practical aspects by extending the existing SLURM resource
manager to be power-aware and evaluating their strategies on
real HPC systems. For example, Georgiou et al. [20] monitor
their HPC system and present results using SLURM. Bodas
et al. [3] propose three types of frequency capping methods
and also evaluate the efficiency of these with SLURM.
Dynamic power allocation results are shown on Cray systems
using another SLURM extension [25]. Other research on
power-aware resource management in smaller-scale production
systems has also been presented [5], [4]. However, all these
implementations are specialized for a single site and depend on
specific underlying mechanisms, so their extendability is poor.
Ellsworth et al. [15] have recently worked towards developing
a preliminary infrastructure for unified power management
using SLURM, but this is mostly a research effort albeit in
the correct direction.

We propose a power-aware resource manager with practical
features and with extendability based on the existing SLURM
resource manager. We provide plugin interfaces and provide
job scheduling and node scheduling plugins and we show a
deployment of our approach in a large scale production system.
Our proposed SLURM can be easily used to implement
various performance estimation, processor variation, and
dynamic power management strategies.

III. DESIGN OF A POWER-AWARE RESOURCE MANAGER

This section describes the design of our proposed
power-aware resource manager. It enables the implementation
of a wide spectrum of power management algorithms within
its framework. Each of these algorithms is expected to have
two main elements:

• Estimating a job’s power consumption and execution time
• Determining resource allocations (nodes and power) for

static and dynamic power management
Figure 1 shows the design of our proposed power-aware

resource manager, which is implemented as a SLURM
extension. SLURM supports the implementation of new job
scheduling and node scheduling algorithms using plugin
interfaces. These plugins are compiled as shared objects,
enabling different scheduling algorithms (such as backfilling)
to be loaded dynamically. For our approach, we reused
these existing job and node scheduling plugin interfaces and
added plugin interfaces to support static and dynamic power
management. We also added power monitoring and power
capping control functions available to plugin developers to
ease the development of power management functionality.

Our extensions are highlighted in Figure 1. SLURM
consists of three primary parts—a user side job submission
application (sbatch), a centralized scheduler that manages
all resources (slurmctld), and per-node daemons for local
control (slurmd). Users request nodes and time on a shared
cluster by submitting their job to SLURM. The centralized
scheduler, slurmctld, then deals with job submission, job
scheduling, and node management as shown in the figure. The
job scheduler optimizes the execution order of jobs from the
job queue based on constraints such as priorities, accounts, and
job resource requirements. The node scheduler selects the best
physical node allocation for a job by taking into consideration
factors such as number of cores, memory usage, or demands
of a specific accelerator.

We add a power scheduler, a node power manager and
a low-level power plugin interface to the existing SLURM
code. The power scheduler is responsible for scheduling all of
the system power, and it does so by monitoring the compute
nodes and distributing power. It has three components: (a)
Power monitor, (b) Power analyzer, and (c) Power allocator.
The power allocator and power analyzer provide extensible
plugin interfaces. This allows other plugin developers to
implement and test their own power management algorithms.
We discuss our extensions to SLURM in detail in the following
subsections.

A. Functionality of Power Management
a) Power Monitor:: The power monitor is responsible

for periodically monitoring node and system power and for
capping the node-level power when required. In the case of
hardware overprovisioned systems, it is possible that the total
system power may exceed the designated budget unexpectedly
due to software bugs or security attacks. Should such a
scenario occur, the power monitor will issue an alert and lower
the power cap value of some compute nodes or kill some of
jobs, if necessary, to guarantee safe operation.

b) Power Analyzer:: The power analyzer predicts the
execution time of a job based on the number of nodes allocated
for the job. The job scheduling plugin uses this information
to determine when and where each job in the job queue
should be executed for maximizing system throughput. The job
scheduling plugin along with the power analyzer also estimates
the availability of power and hardware resources for future
time windows by sending queries to the node scheduler and
the power allocator. The execution time prediction algorithms
are provided as plugins.

c) Power Allocator:: The power allocator cooperates
with the power analyzer and is responsible for both static
and dynamic power control. It determines the optimal
power allocation of each job before it is launched. It
also periodically updates the power allocation of all the
executing jobs dynamically to manage the total system power
consumption. Based on requests from the job scheduler, it also
estimates future power resource utilization. This functionality
is provided for further scheduling optimization, for example,
with techniques such as backfilling.



User node Scheduler node Compute nodes

sbatch slurmd

Power scheduler

Power knob
(RAPL/DVFS/IPMI)

Job

Node scheduler

Executing
job

Job scheduler

slurmctld

Job queue

analyze

estimated
power/perf.

comm.

alert

store

set / get power

allocate nodes

Power
monitor

set / get 
Power 

Job Scheduler
(backfill)

submit
job

allocate 
power

Launcher

Job power log(DB)

Power 
Analyzer

Node 
Scheduler

Power
Allocator

Node Power 
Manager

Low-level 
Power Plug-in

Fig. 1. Design of our power-aware framework in SLURM, including the power scheduler, node power manager and low-level power plugin.

d) Node Power Manager:: A two-level hierarchical
power management is supported in our design with the help of
a node-level power manager. The node power manager has the
role of making local power control decisions while cooperating
with the job scheduler.

e) Power Knobs and Low-level Power Plugins::
Processor vendors provide different power knobs for
measuring and limiting the power consumption of components.
Examples include techniques such as DVFS, RAPL, IPMI
[1] or PowerInsight [10], [7]. An additional low-level power
plugin interface allows us to abstract the differences between
the underlying vendor-specific power control mechanisms.

B. APIs
Researchers or system developers can create their own

modules for power-aware scheduling and power control using
the APIs provided by the plugin interface and the power
control daemon. We list these APIs in Table I.

C. Implementing Site-Specific Power Management Strategies
In this subsection, we show how plugin developers

can implement different power management strategies by
exploring the techniques that have been discussed in the
literature so far. Table II shows a summary of existing
power-aware research. Ehsan et al. [32] optimize for
variation-awareness on a SMP CPU. In their case, the node
power manager extensions can be used for implementation.
Gholkar et al. [21] use a two-level hierarchical variation-aware
approach, and this is supported with the job scheduler, power
allocator and the node power manager. Sarood et al. [29]
and Patki et al. [28] optimize for job throughput using
power-aware job scheduling techniques that depend on integer
linear programming and power-aware backfilling. In these
cases, the job scheduler and power allocator API is helpful
for implementation. Power allocator with power_schedule
is suitable for dynamic power management work such as the
research proposed by Ellsworth et al. [12]. Processor variation

is a node characteristic, and the node scheduler APIs can be
used to add variation-awareness.

IV. IMPLEMENTATION AND DEPLOYMENT

We demonstrate the operation and effectiveness of our
power-aware SLURM variant by deploying it on a large-scale
production system. This will help us understand the feasibility
and impact of overprovisioning HPC systems at scale. In this
section, we describe the system specification and an example
power control policy that was implemented using the plugin
interface discussed in Section III.

A. Experimental Environment
We use the HA8000 supercomputer system at Kyushu

University. The system contains 965 compute nodes and each
node has two Xeon processors with 128-GB DDR3 memory.
A detailed specification of the system is presented in Table III.
The processor supports the RAPL interface [10], [24], which
provides users with the ability to monitor and limit power
consumption of the CPU and DRAM. In this evaluation,
we measure only CPU package power though, due to BIOS
limitations.

B. Example Power Management Policy
One way to optimize system performance in

overprovisioned HPC systems is to let the job scheduler
determine the best power cap for each CPU socket based on
the characteristics of submitted jobs. For example, Schöne
et al. [31] and Weissel et al. [33] use the information
of frequency and LLC-miss rate as hints for determining
the power cap value for each CPU. In Cao et al. [8], the
users provide the information about acceptable performance
degradation of their jobs to the scheduler, which then
automatically decides the power cap for each job.

Although there are several ways to optimize the power
cap value, our goal in this paper is to analyze the system
power consumption and performance in a large-scale HPC



TABLE I
DETAILS OF THE PLUGIN APIS. ALL FUNCTIONS RETURN THE STATUS VALUE.

API Provider API Name Description Main inputs
Job scheduler init This function is called when starting SLURM. N/A

If the site-specific job scheduler plugin wants to update
the job queue periodically, a separate thread should be forked.
SLURM provides a slurm_sched_p_schedule function,
however, this is not suitable for plugin use.

Node scheduler select_p_job_test This function allocates nodes to the job. MODE
It can also reserve nodes for future and calculate job start time. (Operational mode can be now or future)
The MODE argument (now or future) determines whether
nodes are allocated immediately or in the future.
Now is used just before job launch. JOB
The best nodes are selected with processor variation-awareness The job descriptor has information about a
and the node list is populated. single queued job. It contains the node list,

power cap, start time, etc.
Future is used for backfilling. JOB
This function calculates future node allocation based on all job (Same as above)
descriptors in the job queue. The future start time of the job
is updated based on backfilling requirements.

Power allocator power_p_job_test This function reserves power for the job. It checks the current JOB
(new) power consumption and returns SUCCESS if enough power

is available.
power_schedule Used for dynamic power management. It periodically checks N/A

for available power and redistributes power intelligently.
power_alert Used for emergency power management. This creates an alert N/A

when the system power consumption goes over a certain
threshold. This function is called by power monitor.

Power analyzer estimate_job_time Estimates a job’s execution time given power constraints. JOB
(new)
Power monitor get_remote_power Returns the power consumption of the specified nodes. NODE_LIST
(new) NODE_LIST contains current node-level

information such as power consumption,
CPU frequency, power cap, etc.

get_remote_frequency Returns the CPU frequencies of the specified nodes. NODE_LIST
set_remote_power Sets the power caps for the specified nodes. NODE_LIST with specified power budgets
set_remote_frequency Sets the CPU frequency for the specified nodes. NODE_LIST with specified maximum

TABLE II
CORRESPONDENCE BETWEEN EXISTING POWER MANAGEMENT

STRATEGIES AND THE PROPOSED FRAMEWORK

Power Job Node Power Power Node
Management Scheduler Scheduler Allocator Analyzer Power
Strategy Manager
Ehsan [32] X
Gholkar [21] X X X
Sarood [29] X X
Patki [28] X X X
Ellsworth [12] X
Inadomi [23] X X X X
Cao [8] X X X X

TABLE III
SPECIFICATION OF THE EXPERIMENTAL SYSTEM

Total nodes 965
Sockets per node 2
Cores per socket 12
Total cores 23,160
Memory per node 128GB
CPU Xeon E5-2670 v2 (2.5GHz)
Interconnect Infiniband FDR
Operating System Linux with kernel 2.6.32
MPI Open MPI v1.7.3
Theoretical Peak (Rpeak) 1000 TFlop/s
Linpack Performance (Rmax) 712.5 TFlop/s

production system using our power aware SLURM variant.
Therefore, in order to make the analysis independent of the
specific optimization methodology, we use a simple, baseline

power capping strategy that is driven by user input. We assume
that the every user provides a power cap for his/her job at
submission time. This power cap can be hidden from the users
and determined by system software using a power monitor,
profiling tools or dynamic estimation in the future.

For this paper, the SLURM scheduler directly uses the
power cap value specified by users. Whenever the scheduler
selects a job to be executed, it calculates the expected total
system power consumption based on the specified power cap
value and tries to keep the system power below the power
budget. If the expected power consumption exceeds the budget
when trying to execute a job at the head of the job queue, the
job has to wait in the queue until enough power is available.
The scheduler also uses a backfilling algorithm to improve
system performance.

V. ANALYSIS AND DISCUSSION

We perform a variety of experiments to depict the validity
and usefulness of the developed power-aware scheduler.
First, we evaluate basic power consumption under various
conditions on a large-scale system. Second, we analyze power
consumption behavior of overprovisioned HPC systems in
terms of unutilized compute nodes. We then discuss an
important design issue in overprovisioned HPC systems of
how many extra nodes should be procured.



0 150 300 450 600 750 900
0

10
20
30
40
50
60
70
80
90
100
110
120
130

Execution time (s)

Po
w
er

 co
ns
um

pti
on

(k
W

)

100kW

110kW

120kW

system power budget (120kW)
system power budget (110kW)
system power budget (100kW)

Fig. 2. Validation under different system power budgets

A. Assumptions
In our evaluation, we vary the total power budget of the

system and the characteristics of the job mixes executed.
We create a synthetic job that computes parallel matrix
multiplication on each node. Matrix multiplication is a CPU
intensive application and consumes high CPU power, which
is about about 85W per CPU socket in our case. In our study,
we use three CPU power caps, 85W, 70W, and 55W—the first
one being equivalent to not having a power bound (based on
the maximum consumption for our synthetic job). Memory
intensive applications usually see little performance penalty
when low CPU power cap values are used as their performance
is not computation bound [9]. We capture the case of memory
intensive jobs by using 55W capped jobs, as lowering the
CPU frequency affects the rate at which memory operations
are performed [23]. Even though our matrix multiplication
program is a single node job, we replicate it on several
compute nodes to mimic multi-node jobs. This does not
generate any communication between compute nodes. In this
analysis, we simply omit the effect of communication behavior
on power consumption and application performance. While
this can be viewed as an unrealistic assumption, it is important
to note that the impact of communication performance on
several scientific applications is minimal when compared to
slowing down the CPU by a factor of 2 (which is what happens
between the unbounded 85W and power-capped 55W case).
Also note that our goal in this paper is to focus on evaluating
the proposed resource manager for deployment. Understanding
the impact of communication costs on performance and power
in an orthogonal problem, and we plan to include such research
in our future work.

The job arrival rate and the number of nodes for each job
mimic a real HPC system. We use a job submission trace from
the RIKEN RICC supercomputer [2] and follow 600 jobs from
the head of the trace for the evaluation.

B. Validation Under Different System Power Budgets
We first evaluate the power consumption of the system with

all nodes in the HA8000 system while varying the total power
budget. We evaluate three power budgets, 100kW, 110kW, and

120kW. Figure 2 presents the aggregate power consumption
across all of the compute nodes.

As shown in Figure 2, our power-aware SLURM variant
successfully controls power usage of executing jobs. When
the system is fully loaded (middle section of each curve on
the graph), the actual power is almost the same as the allocated
power budget. This indicates that power-aware SLURM
correctly schedules jobs under a restricted power budget in a
large scale HPC system and ensures high utilization. Though
we focus only on CPU power consumption obtained by RAPL
in this experiment, the outcome is applicable to system wide
power since the power for the other components is practically
constant and can be regarded as an offset.

C. Evaluation of System Power Consumption
In this subsection, we evaluate system power consumption

for several configurations of job arrival rates, job mixes and the
number of compute nodes with the same total system power
budget. We set the system power budget equal to the peak
CPU power (TDP) of 500 nodes (125kW).

Since the job arrival rate affects the scheduling efficiency,
we first vary the job submission rate. Figure 3 shows
the system power usage over time when we vary the job
submission rate by 200x, 400x, and 600x of the original rate
when 400 nodes are used. The cases of 200x, 400x and 600x
indicate low, medium, and high job submission rates. We use
the job submission trace shown in V-A and same 600 jobs. The
figure shows the power consumption from submission of the
first job to the completion of the last job. In the figures, gray
and dark gray areas show the power consumption for nodes
that are actively assigned to jobs and nodes where no jobs are
assigned (idle nodes), respectively. The black lines present the
number of jobs waiting in the queue.

The original job submission rate is not enough to fully
utilize the available resources as the job execution trace used
in this evaluation was collected for much smaller machines
than our environment. Even in the case of the job submission
rate of 200x, the submission rate is too low to make full use of
available compute nodes in the system, resulting in low overall
system performance and longer running time. There is almost
no job in the waiting queue and the scheduler cannot fully
utilize available power and compute node resources. When we
increase the submission rate, the power consumption almost
reaches the power budget, meaning that system is fully loaded.
When comparing the 400x and 600x scenarios, note that
almost all the nodes are fully utilized and compute resources
are exhausted in both cases. As a result, the execution times
do not change, but the number of queued jobs increases faster
in 600x. We use the job submission rate of 400x in the rest
of the experiments.

Figure 4 shows power consumption for three kinds of job
mixes: all low-power (55W) jobs, mix of high (85W) and low
(55W) power jobs, and all high-power (85W) jobs. In the case
of all low-power jobs, shown in Figure 4-(A), if we take a look
at the stable period (portion that the system is fully loaded),
almost all of the compute nodes are assigned for executing



0

50

100

150

200

250

300

0

25

50

75

100

125

0 150 300 450 600 750 900

Nu
m

be
r o

f w
ai
tin

g 
jo

bs

Po
w

er
 co

ns
um

pti
on

 (k
W

)

Execution time (s)
(A) Job submission rate: x200

Idle node Running node Number of waiting jobs

0

50

100

150

200

250

300

0

25

50

75

100

125

0 150 300 450 600 750 900

Nu
m

be
r o

f w
ai
tin

g 
jo

bs

Po
w

er
 co

ns
um

pti
on

 (k
W

)

Execution time (s)
(B) Job submission rate: x400

0

50

100

150

200

250

300

0

25

50

75

100

125

0 150 300 450 600 750 900

Nu
m

be
r o

f w
ai
tin

g 
jo

bs

Po
w

er
 co

ns
um

pti
on

 (k
W

)

Execution time (s)
(C) Job submission rate: x600

system power budget

Fig. 3. Power consumption over time for different job arrival rates

0

50

100

150

200

250

300

0

25

50

75

100

125

0 150 300 450 600 750 900

Nu
m

be
r o

f w
ai
tin

g 
jo

bs

Po
w

er
 co

ns
um

pti
on

 (k
W

)

Execution time (s)
(A) Job Mix : all low-power

Idle node Running node Number of waiting jobs

0

50

100

150

200

250

300

0

25

50

75

100

125

0 150 300 450 600 750 900

Nu
m

be
r o

f w
ai
tin

g 
jo

bs

Po
w

er
 co

ns
um

pti
on

 (k
W

)

Execution time (s)
(B) Job Mix : low and high

0

50

100

150

200

250

300

0

25

50

75

100

125

0 150 300 450 600 750 900

Nu
m

be
r o

f w
ai
tin

g 
jo

bs

Po
w

er
 co

ns
um

pti
on

 (k
W

)

Execution time (s)
(C) Job Mix : all high-power

Fig. 4. Power consumption over time for different job mixes

0

50

100

150

200

250

300

0

25

50

75

100

125

0 150 300 450 600 750 900

Nu
m

be
r o

f w
ai
tin

g 
jo

bs

Po
w

er
 co

ns
um

pti
on

 (k
W

)

Execution time (s)
(A) 400 nodes (no overprovisioned)

Idle node Running node Number of waiting jobs

0

50

100

150

200

250

300

0

25

50

75

100

125

0 150 300 450 600 750 900

Nu
m

be
r o

f w
ai
tin

g 
jo

bs

Po
w

er
 co

ns
um

pti
on

 (k
W

)

Execution time (s)

0

50

100

150

200

250

300

350

0

25

50

75

100

125

0 150 300 450 600 750 900 1050 1200 1350 1500 1650

Nu
m

be
r o

f w
ai
tin

g 
jo

bs

Po
w

er
 co

ns
um

pti
on

 (k
W

)

Execution time (s)
(B) 680 nodes (280 nodes overprovisioned) (C) 960 nodes (560 nodes overprovisioned)

Fig. 5. Power consumption over time for different number of overprovisioned nodes

jobs. However, the power consumption is far below the power
budget, which indicates that the power resource is not fully
utilized because we run out of compute nodes. On the other
hand, in the case of all high-power jobs, shown in Figure 4-(C),
the power consumption is close to the system power budget.
However, there are many idle nodes as well as many jobs
waiting in the queue. This is because we run out of power.
The important observation here is that idle nodes consume
a non-negligible amount of power and prevent the scheduler
from executing more jobs. As stated in Section I, it is not easy
to turn off the unutilized compute nodes for a very short period
of time in real production systems, and the power consumption
of the idle node should thus be taken into account.

Figure 5 shows the results for when we vary the number
of overprovisioned nodes (or the degree of overprovisioning).
under a fixed system power budget. Figure 5 shows the power
consumption of 400 nodes, 680 nodes and 960 nodes under
the power budget of 100kW (which is the peak for operating
400 nodes). Figure 5-(A) shows that, while most of nodes are
actively executing jobs, the power consumption is significantly

lower than the system power budget. In this case, the scheduler
is blocked because there are not enough nodes to launch
more jobs. Figure 5-(B) shows the power consumption for
680 nodes (280 nodes are overprovisioned). In this case,
the total execution time is shorter than the 400 node case,
leading to better throughput. This is the expected case for
overprovisioning. Unutilized power still remains, so more
nodes can potentially be added. Figure 5-(C) shows power
consumption of 960 nodes (560 nodes are overprovisioned).
In this case, the power is almost fully utilized. However, in this
case, the scheduler is blocked on power, as most of idle nodes
cannot start new jobs due to insufficient power budget. As a
result, excessive overprovisioning reduces system performance
due to power wasted on idle nodes.

D. Discussion on Designing Overprovisioned Systems

As shown in the previous subsection, power consumed on
idle nodes affects system efficiency. The number of idle nodes
depends on the characteristics of the job mix and the degree
of overprovisioning, which reflects the number of extra nodes



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

on
ly

-lo
w

m
an

y-
lo

w
m

id
dl

e
m

an
y-

hi
gh

on
ly

-h
ig

hPo
w

er
 co

ns
um

pti
on

 n
or

m
al

ize
d

to
 T

DP
 o

f C
PU

s x
 4

00
 n

od
es

job power wasted(idle) power

400 nodes
(no ovp)

540 nodes 
(140 ovp)

680 nodes 
(280 ovp)

820 nodes 
(420 ovp) 

960 nodes 
(560 ovp)

Fig. 6. Average power resource utilization

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

Nu
m

be
r o

f r
un

ni
ng

 n
od

es
 n

or
m

al
ize

d
to

 n
um

be
r o

f s
ys

te
m

 n
od

es

400 nodes
(no ovp)

540 nodes 
(140 ovp)

680 nodes 
(280 ovp)

820 nodes 
(420 ovp) 

960 nodes 
(560 ovp)

Fig. 7. Average node resource utilization

that are provisioned. In this subsection, we analyze the power
and performance behavior of the system focusing on idle node
power. Based on this analysis, we also discuss how to design
an overprovisioned system.

We assume the base system design is a non-overprovisioned
HPC system with 400 compute nodes whose system power
budget is the peak power consumption of 400 nodes of
the HA8000 system. Then, we evaluate several cases of
overprovisioned configurations: 540, 680, 820, and 960
compute nodes with the same system power budget as that
of 400 nodes at peak power consumption.

First, we show average power resource utilization, average
node resource utilization, and system throughput under several
configurations in Figure 6, Figure 7, and Figure 8. We execute
five job mixes and consider different job power ratios of
85W:70W:55W for each job mix. These are 1:0:0 (high-only),
3:2:1 (many-high), 1:1:1 (balance), 1:2:3 (many-low), and
0:0:1 (low-only). The power utilization is normalized to the
power budget (400-nodes at peak power). We are interested
in comparing the steady state resource utilization in these
experiments and produce our statistics from the middle portion
of the execution. More specifically, our statistics are based on
the system performance while running the middle portion of
200 jobs of the 600 total jobs from the trace.

0

0.2

0.4

0.6

0.8

1

1.2

400 nodes
(no ovp)

540 nodes
(140 ovp)

680 nodes
(280 ovp)

820 nodes
(420 ovp)

960 nodes
(560 ovp)

Th
ro

ug
hp

ut
 (j

ob
s/

m
in

ut
e)

low-only many-low middle many-high high-only

Fig. 8. System throughput (jobs per minute)

From Figure 6, it can be seen that when we increase
the number of overprovisioned nodes to 680-nodes, power
resource utilization increases. However, utilization decreases
if the node count increases any further. The node resource
is exhausted in cases of small numbers of overprovisioned
nodes due to the inability of concurrent work to fully consume
the power budget. The power resource is exhausted in cases
of large numbers of overprovisioned nodes due to the nodes
that the scheduler must leave idle to maintain the power
budget. This phenomenon is supported by Figure 7 where node
utilization is almost 1.0 in the 400-node and 540-node cases.

Figure 8 shows that system throughput, which is defined
as the number of completed jobs per unit of time, tends
to improve when we increase the number of nodes. This
is expected as overprovisioning provides more computational
resources. However, the performance trends in the figure are
more complex because utilization decreases for the 960-node
case and depends on job mixes. Power-hungry job mixes (with
many CPU intensive jobs) prefer a relatively small number
of overprovisioned nodes. This is because the average node
power consumption is high and power resource is exhausted
by small number of nodes. On the other hand, low-power
job mixes (with more memory intensive jobs) prefer relatively
large numbers of overprovisioned nodes as the power resource
cannot be exhausted easily and a larger number of nodes helps
increase the number of jobs executing concurrently.

Figure 9 presents energy consumption broken down in terms
of energy for actual execution and energy for idle nodes.
Here, job energy is energy consumed by executing nodes and
wasted energy is that consumed by the idle nodes. As shown
in the figure, wasted energy increases when the number of
overprovisioned nodes increases beyond 680. This is expected
as with a large number of nodes, we have more idle nodes
and insufficient remaining power budget for scheduling jobs.

From the above analyses, we conclude that the degree of
overprovisioning and types of job mixes affect both overall
system performance and energy efficiency. Therefore, we need
to design overprovisioned HPC systems carefully, while taking
into account the number of nodes to be overprovisioned as well
as typical job characteristics expected on the system.



0
5

10
15
20
25
30
35
40
45

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

lo
w

-o
nl

y
m

an
y-

lo
w

m
id

dl
e

m
an

y-
hi

gh
hi

gh
-o

nl
y

Co
ns

um
ed

 e
ne

rg
y 

(M
J) job energy wasted(idle) energy

400 nodes
(no ovp)

540 nodes 
(140 ovp)

680 nodes
(280 ovp)

820 nodes
(420 ovp) 

960 nodes
(560 ovp)

Fig. 9. Breakdown of energy consumption

E. Guideline for Overprovisioned System Design
Based on the analysis presented in the previous subsection,

we briefly present a guideline for designing overprovisioned
systems. For the sake of simplicity, we approximate system
performance by the number of effective CPUs utilized for
computation, CPUeff , and use it as our target metric. This
guideline determines the number of effective CPUs, CPUeff ,
based on three things: the system power budget, Pbudget,
the number of installed CPUs, CPUinstalled, and the power
characteristics of the job mix. We assume that the job
characteristics can be determined roughly at design time based
on targeted applications and targeted users. Here, we consider
jobs with an average power consumption of Pavg .

First, we calculate the number of available CPUs,
CPUavailable, based on the system’s power budget as shown
below in Equation 1.

CPUavailable =
Peff

Pavg
(1)

Here, Peff is effective power that can be utilized for
computing. Peff is calculated as follows using Pbase, which
is the static power component of the CPUs.

Peff = Pbudget � (Pbase ⇥ CPUinstalled) (2)

Finally, the number of effective CPUs for computation,
CPUeff , is calculated as shown in Equation 3. Note that we
cannot use more CPUs than installed.

CPUeff = min(CPUavailable, CPUinstalled) (3)

Figure 10 shows the number of effective CPUs, CPUeff ,
as our metric for system performance as a function of the
installed total nodes and different job mixes. Pavg is simply
calculated by the combination of power cap assumption in
each job mix. The results closely match the throughput
measurements shown in Figure 8 from our experiments on the
HA8000 system. This validates our guideline and we believe
that this metric is a good indicator for system performance. If
the expected average CPU power consumption of executing
jobs in a particular HPC system is known, this model

0
200
400
600
800

1000
1200
1400
1600
1800

400 nodes
(no ovp)

540 nodes
(140 ovp)

680 nodes
(280 ovp)

820 nodes
(420 ovp)

960 nodes
(560 ovp)

Nu
m

be
r o

f e
ffe

cti
ve

 C
PU

s

low-only many-low middle many-high high-only

Fig. 10. Model based estimation of aggregate system performance

can tell us how many extra nodes we should buy for an
overprovisioned system. The limitations of the model are that
we do not consider power consumption for other components
such as DRAM, fans and network. We also do not consider
scheduling slacks. Taking these elements into account is part
of our future work.

VI. CONCLUSIONS

Hardware overprovisioning is a viable approach for
increasing power utilization for HPC systems at scale, but
so far existing work was limited to showing its benefits
on small scale systems or by solely using simulation. In
this work, we have presented the first resource management
system targeting large production overprovisioned systems.
Based on the widely used SLURM, our framework can
maintain a system wide power limit at scale using a set
of new plugin interfaces in combination with portable APIs
for power measurement and control. We have further shown
how several power management strategies in the literature
for hardware overprovisioned systems can be mapped to our
framework. Finally, through experimentation on a large scale
production system at Kyushu University, we have shown that
our framework is safe for deployment on production systems
and that the job mix executed on a system greatly impacts the
degree to which the system should be overprovisioned.

ACKNOWLEDGMENTS

Part of this work was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
(LLNL-CONF-706278). Additionally, this work was supported
by the Japan Science and Technology Agency (JST)
CREST program, A Power Management Framework for Post
Peta-Scale Supercomputers.

REFERENCES

[1] http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html.
[2] The RICC log. http://www.cs.huji.ac.il/labs/parallel/workload/l ricc/

index.html, 2010.
[3] D. Bodas, J. Song, M. Rajappa, and A. Hoffman. Simple power-aware

scheduler to limit power consumption by hpc system within a budget.
In Proceedings of the 2Nd International Workshop on Energy Efficient
Supercomputing, E2SC ’14, pages 21–30, Piscataway, NJ, USA, 2014.
IEEE Press.



[4] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini.
Predictive Modeling for Job Power Consumption in HPC Systems. In
High Performance Computing: 31st International Conference, ISC High
Performance 2016, Frankfurt, Germany, June 19-23, 2016.

[5] A. Borghesi, C. Conficoni, M. Lombardi, and A. Bartolini. Ms3: A
mediterranean-stile job scheduler for supercomputers-do less when it’s
too hot! In High Performance Computing & Simulation (HPCS), 2015
International Conference on, pages 88–95. IEEE, 2015.

[6] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De.
Parameter variations and impact on circuits and microarchitecture. In
Proceedings of the 40th Annual Design Automation Conference, DAC
’03, pages 338–342, New York, NY, USA, 2003. ACM.

[7] M. Broyles, C. Francois, A. Geissler, G. Grout, M. Hollinger,
T. Rosedahl, G. J. Silva, M. Vanderwiel, J. Van Heuklon, and B. Veale.
Ibm energyscale for power7 processor-based systems, 2011.

[8] T. Cao, Y. He, and M. Kondo. Demand-aware power management for
power-constrained hpc systems. In The 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid’16, 2016.

[9] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu.
Memory power management via dynamic voltage/frequency scaling. In
Proceedings of the 8th ACM International Conference on Autonomic
Computing, ICAC ’11, pages 31–40, New York, NY, USA, 2011. ACM.

[10] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. Rapl:
Memory power estimation and capping. In Proceedings of the 16th
ACM/IEEE International Symposium on Low Power Electronics and
Design, ISLPED ’10, pages 189–194, New York, NY, USA, 2010. ACM.

[11] A. B. Downey. A model for speedup of parallel programs. Technical
report, Berkeley, CA, USA, 1997.

[12] D. Ellsworth, A. Malony, B. Rountree, and M. Schulz. Dynamic power
sharing for higher job throughput. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’15, pages 80:1–80:11, New York, NY, USA, 2015. ACM.

[13] D. Ellsworth, A. Malony, B. Rountree, and M. Schulz. POW:
System-wide Dynamic Reallocation of Limited Power in HPC. In High
Performance Parallel and Distributed Computing (HPDC), June 2015.

[14] D. Ellsworth, T. Patki, S. Perarnau, S. Seo, A. Amer, J. Zounmevo,
R. Gupta, K. Yoshii, H. Hoffman, A. Malony, M. Schulz, and
P. Beckman. Systemwide Power Management with Argo. In 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 1118–1121, May 2016.

[15] D. Ellsworth, T. Patki, M. Schulz, B. Rountree, and A. Malony. A
Unified Platform for Exploring Power Management Strategies. In
Proceedings of the 4th International Workshop on Energy Efficient
Supercomputing (to appear). IEEE Press, 2016.

[16] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Optimizing Job
Performance Under a Given Power Constraint in HPC Centers. In Green
Computing Conference, pages 257–267, 2010.

[17] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Utilization Driven
Power-aware Parallel Job Scheduling. Computer Science - R&D,
25(3-4):207–216, 2010.

[18] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Linear
Programming Based Parallel Job Scheduling for Power Constrained
Systems. In International Conference on High Performance Computing
and Simulation, pages 72–80, 2011.

[19] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Parallel Job
Scheduling for Power Constrained HPC Systems. Parallel Computing,
38(12):615–630, Dec. 2012.

[20] Y. Georgiou and M. Hautreux. Evaluating scalability and efficiency of
the Resource and Job Management System on large HPC Clusters. In
Workshop on Job Scheduling Strategies for Parallel Processing, JSSPP
’12, May 2012.

[21] N. Gholkar, F. Mueller, and B. Rountree. Power tuning hpc jobs on
power-constrained systems. In Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation, PACT ’16, pages
179–191, New York, NY, USA, 2016. ACM.

[22] S. Hong, S. H. K. Narayanan, M. Kandemir, and O. Özturk. Process
variation aware thread mapping for chip multiprocessors. In Proceedings
of the Conference on Design, Automation and Test in Europe, DATE
’09, pages 821–826, 3001 Leuven, Belgium, Belgium, 2009. European
Design and Automation Association.

[23] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M. Schulz,
D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda, M. Kondo, and
I. Miyoshi. Analyzing and mitigating the impact of manufacturing
variability in power-constrained supercomputing. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’15, pages 78:1–78:12, New York, NY, USA,
2015. ACM.

[24] Intel. Intel-64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A and 3B: System Programming Guide, 2011.

[25] M. Jette. Slurm Power Management Support. https://slurm.schedmd.
com/SLUG15/Power mgmt.pdf, 2015.

[26] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability,
workloads, and user runtime estimates in scheduling the ibm sp2 with
backfilling. IEEE Trans. Parallel Distrib. Syst., 12(6):529–543, June
2001.

[27] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and
B. R. de Supinski. Exploring Hardware Overprovisioning in
Power-constrained, High Performance Computing. In International
Conference on Supercomputing, June 2013.

[28] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth, B. L. Rountree,
M. Schulz, and B. R. de Supinski. Practical resource management in
power-constrained, high performance computing. In Proceedings of
the 24th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’15, pages 121–132, New York, NY,
USA, 2015. ACM.

[29] O. Sarood, A. Langer, A. Gupta, and L. Kale. Maximizing throughput
of overprovisioned hpc data centers under a strict power budget. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14, pages 807–818,
Piscataway, NJ, USA, 2014. IEEE Press.

[30] O. Sarood, A. Langer, L. V. Kale, B. Rountree, and B. R. de Supinski.
Optimizing Power Allocation to CPU and Memory Subsystems in
Overprovisioned HPC Systems. In International Conference on Cluster
Computing, 2013.

[31] R. Schöne and D. Hackenberg. On-line analysis of hardware
performance events for workload characterization and processor
frequency scaling decisions. In Proceedings of the 2Nd ACM/SPEC
International Conference on Performance Engineering, ICPE ’11, pages
481–486, New York, NY, USA, 2011. ACM.

[32] E. Totoni, A. Langer, J. Torrellas, and L. Kale. Scheduling for HPC
Systems with Process Variation Heterogeneity. January 2015.

[33] A. Weissel and F. Bellosa. Process cruise control: Event-driven clock
scaling for dynamic power management. In Proceedings of the 2002
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, CASES ’02, pages 238–246, New York, NY, USA,
2002. ACM.

[34] A. Yoo, M. Jette, and M. Grondona. SLURM: Simple Linux Utility
for Resource Management. In Job Scheduling Strategies for Parallel
Processing, volume 2862 of Lecture Notes in Computer Science, pages
44–60, 2003.


